Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Robot Surg ; 18(1): 150, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564025

RESUMO

Pedicle screw placement (PSP) is the fundamental surgical technique that requires high accuracy for novice orthopedists studying spinal oncology education. Therefore, we set forth to establish a computer-assisted robotic navigation training program for novice spinal oncology education. Novice orthopedists were involved in this study to evaluate the feasibility and safety of the computer-assisted robotic navigation (CARN) training program. In this research, trainees were randomly taught by the CARN training program and the traditional training program. We prospectively collected the clinical data of patients with spinal tumors from 1st May 2021 to 1st March 2022. The ability of PSP was evaluated by cumulative sum (CUSUM) analysis, learning curve, and accuracy of pedicle screws. The patients included in both groups had similar baseline characteristics. In the CUSUM analysis of the learning curve for accurate PSP, the turning point in the CARN group was lower than that in the traditional group (70th vs. 92nd pedicle screw). The LC-CUSUM test indicated competency for PSP at the 121st pedicle screw in the CARN group and the 138th pedicle screw in the traditional group. The accuracy of PSP was also significantly higher in the CARN group than in the traditional group (88.17% and 79.55%, P = 0.03 < 0.05). Furthermore, no major complications occurred in either group. We first described CARN in spinal oncology education and indicated the CARN training program as a novel, efficient and safe training program for surgeons.


Assuntos
Parafusos Pediculares , Procedimentos Cirúrgicos Robóticos , Cirurgiões , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Curva de Aprendizado , Computadores
2.
J Hazard Mater ; 465: 133095, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056270

RESUMO

In recent years, various materials have been used to adsorb and remove perfluoroalkyl compounds from water. However, most of these materials have limited applications due to their high cost, complex synthesis, inadequate selectivity and sensitivity, and, even worse, the possibility of introducing secondary pollution. Here, under mild conditions, we prepared an inexpensive imidazolium chloride and nitrogen-rich polymer (TAGX-Cl) with a high cationic loading rate and a high yield (>82%). The adsorbent exhibits excellent pH tolerance (pH=1-9) and achieves nearly 99.9% removal of nine perfluoroalkyl carboxylic acids (PFCAs) within 120 min. Experimental data and theoretical simulations confirmed that synergistic electrostatic interactions, hydrogen bonds, and P-π interactions control the adsorptive ability of TAGX-Cl. This work provides a practical strategy for PFCAs removal.

3.
Microb Cell Fact ; 22(1): 65, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024921

RESUMO

BACKGROUND: Highly efficient production of L-phenylalanine (L-Phe) in E. coli has been achieved by multiple rounds of random mutagenesis and modification of key genes of the shikimate (SHIK) and L-Phe branch pathways. In this study, we performed transcriptomic (16, 24 and 48 h) and metabolomic analyses (8, 16, 24, 32,40, and 48 h) based on time sequences in an engineered E. coli strain producing L-Phe, aiming to reveal the overall changes of metabolic activities during the fermentation process. RESULTS: The largest biomass increase rate and the highest production rate were seen at 16 h and 24 h of fermentation, respectively reaching 5.9 h-1 and 2.76 g/L/h, while the maximal L-Phe titer of 60 g/L was accumulated after 48 h of fermentation. The DEGs and metabolites involved in the EMP, PP, TCA, SHIIK and L-Phe-branch pathways showed significant differences at different stages of fermentation. Specifically, the significant upregulation of genes encoding rate-limiting enzymes (aroD and yidB) and key genes (aroF, pheA and aspC) pushed more carbon flux toward the L-Phe synthesis. The RIA changes of a number of important metabolites (DAHP, DHS, DHQ, Glu and PPN) enabled the adequate supply of precursors for high-yield L-Phe production. In addition, other genes related to Glc transport and phosphate metabolism increased the absorption of Glc and contributed to rerouting the carbon flux into the L-Phe-branch. CONCLUSIONS: Transcriptomic and metabolomic analyses of an L-Phe overproducing strain of E. coli confirmed that precursor supply was not a major limiting factor in this strain, whereas the rational distribution of metabolic fluxes was achieved by redistributing the carbon flux (for example, the expression intensity of the genes tyrB, aspC, aroL and aroF/G/H or the activity of these enzymes is increased to some extent), which is the optimal strategy for enhancing L-Phe production.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Fenilalanina/metabolismo , Transcriptoma , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação
4.
Front Oncol ; 13: 1034466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035168

RESUMO

Background: Even if COVID-19 vaccine has gradually been adopted in the world, information of side effects and crosstalk in patients with spinal tumors is absent due to the exclusion from clinical research. In this research, we aimed to investigate the efficacy and safety for the patients with spinal tumors treated by denosumab. Methods: In this retrospective research, 400 patients under treatment of denosumab against spinal tumors in real-clinical experience were grouped into two cohorts according to the treatment of COVID-19 vaccine. And linked hospital data, serum samples and unsolicited related adverse events had been collected from January 22nd 2021 to June 1st 2021 respectively. Results: 233 patients of all participants who received regular treatment of denosumab were vaccinated by mRNA or inactivated vaccine. Patients of metastatic disease and primary osseous spinal tumor showed similar distribution in both two groups. Over the study period, within 176 patients tested the status of serologic response of vaccine, 88(81.48%) and 41(87.23%) individuals injected one or two inactivated vaccines had effective antibody against SARS-CoV-2 infections. As 21 patients (85.71%) treated by mRNA vaccine did. Considering of the safety of vaccine, most common systemic adverse events were nausea or vomiting (45 events vs 23events). Interestingly, fewer participants in the vaccine group were statistically recorded in local adverse events than in the placebo group (16 events vs 33 events). Conclusions: Our initial real-clinical experience suggests that COVID-19 vaccines are likely safe and effective in in patients with spinal tumors receiving denosumab treatment.

5.
Synth Syst Biotechnol ; 7(1): 544-553, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35087957

RESUMO

Melatonin is a biogenic amine that can be found in plants, animals and microorganism. The metabolic pathway of melatonin is different in various organisms, and biosynthetic endogenous melatonin acts as a molecular signal and antioxidant protection against external stress. Microbial synthesis pathways of melatonin are similar to those of animals but different from those of plants. At present, the method of using microorganism fermentation to produce melatonin is gradually prevailing, and exploring the biosynthetic pathway of melatonin to modify microorganism is becoming the mainstream, which has more advantages than traditional chemical synthesis. Here, we review recent advances in the synthesis, optimization of melatonin pathway. l-tryptophan is one of the two crucial precursors for the synthesis of melatonin, which can be produced through a four-step reaction. Enzymes involved in melatonin synthesis have low specificity and catalytic efficiency. Site-directed mutation, directed evolution or promotion of cofactor synthesis can enhance enzyme activity and increase the metabolic flow to promote microbial melatonin production. On the whole, the status and bottleneck of melatonin biosynthesis can be improved to a higher level, providing an effective reference for future microbial modification.

6.
Bioprocess Biosyst Eng ; 44(8): 1685-1697, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33748869

RESUMO

L-tryptophan (L-trp) production in Escherichia coli has been developed by employing random mutagenesis and selection for a long time, but this approach produces an unclear genetic background. Here, we generated the L-trp overproducer TPD5 by combining an intracellular L-trp biosensor and fluorescence-activated cell sorting (FACS) in E. coli, and succeeded in elucidating the genetic basis for L-trp overproduction. The most significant identified positive mutations affected TnaA (deletion), AroG (S211F), TrpE (A63V), and RpoS (nonsense mutation Q33*). The underlying structure-function relationships of the feedback-resistant AroG (S211F) and TrpE (A63V) mutants were uncovered based on protein structure modeling and molecular dynamics simulations, respectively. According to transcriptomic analysis, the global regulator RpoS not only has a great influence on cell growth and morphology, but also on carbon utilization and the direction of carbon flow. Finally, by balancing the concentrations of the L-trp precursors' serine and glutamine based on the above analysis, we further increased the titer of L-trp to 3.18 g/L with a yield of 0.18 g/g. The analysis of the genetic characteristics of an L-trp overproducing E. coli provides valuable information on L-trp synthesis and elucidates the phenotype and complex cellular properties in a high-yielding strain, which opens the possibility to transfer beneficial mutations and reconstruct an overproducer with a clean genetic background.


Assuntos
Técnicas Biossensoriais , Escherichia coli/genética , Engenharia Metabólica/métodos , Mutagênese , Mutação , Triptofano/química , Biotecnologia/métodos , Separação Celular , Escherichia coli/metabolismo , Fermentação , Citometria de Fluxo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fenótipo , Ligação Proteica , Relação Estrutura-Atividade , Transcriptoma
7.
Biosens Bioelectron ; 167: 112456, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32798802

RESUMO

In vivo biosensors have a wide range of applications, from the detection of metabolites to the regulation of metabolic networks, providing a versatile tool for cell biology and metabolic engineering. However, compared with the vast array of small molecules present in nature, the existing range of biosensors is far from sufficient. Here we describe the use of human hypoxanthine guanine phosphoribosyltransferase (HGPRT) as a ligand binding domain (LBD) protein, that acts by ligand-dependent stabilization, to build a biosensor for detection of the pentose phosphate pathway metabolite 5-phospho-α-D-ribose 1-diphosphate (PRPP). Using this protein as a template, we computationally redesigned a new pocket de novo according to the pose of the ligand, creating a binding mode exclusive to recognize another pentose phosphate metabolite, D-erythrose 4-phosphate (E4P), and glycerate-3-phosphate (3PG), from the glycolysis pathway. Furthermore, E4P biosensor was developed by fluorescence-activated cell sorting (FACS) and application of it enabled successful screening for the highest phenylalanine-producing strain reported to date. This work provides a strategy for computational design and development of biosensors for a broad range of molecules.


Assuntos
Técnicas Biossensoriais , Proteínas de Transporte , Humanos , Engenharia Metabólica , Redes e Vias Metabólicas , Domínios Proteicos
8.
Biotechnol Lett ; 41(3): 401-408, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30680497

RESUMO

OBJECTIVES: To determine the binding sites for L-phenylalanine in TyrR protein via a rational mutation analysis combining biosensors and computer-aided simulation. RESULTS: TyrR protein of Escherichia coli is the chief transcriptional regulator of several genes essential for the biosynthesis and transport of aromatic amino acids. The identification of ligand-binding sites is often the starting point for protein function annotation and structure-based protein design. Here we combined computer-aided prediction methods and biosensors to identify the ligand-binding sites for L-Phe in TyrR protein. CONCLUSIONS: Residues at positions 160, 173 and 184 of TyrR protein are important for transcriptional activation of target genes tyrP induced by L-Phe, which indicates that they are the bona fide L-Phe binding sites of TyrR protein.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Fenilalanina/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sítios de Ligação , Técnicas Biossensoriais , Análise Mutacional de DNA , Proteínas de Escherichia coli/genética , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...